The Cathode Ray Tube (CRT) is a vacuum tube containing an electron gun (a source of electrons) and a fluorescent screen, with internal or external means to accelerate and deflect the electron beam, used to create images in the form of light emitted from the fluorescent screen. The image may represent electrical waveforms (oscilloscope), pictures (television, computer monitor), radar targets and others.
The CRT uses an evacuated glass envelope which is large, deep, heavy, and relatively fragile.
Contents |
The earliest version of the CRT was invented by the German physicist Ferdinand Braun in 1897 and is also known as the Braun tube.[1] It was a cold-cathode diode, a modification of the Crookes tube with a phosphor-coated screen.
In 1907, Russian scientist Boris Rosing used a CRT in the receiving end of an experimental video signal to form a picture. He managed to display simple geometric shapes onto the screen, which marked the first time that CRT technology was used for what is now known as television.[2]
The first cathode ray tube to use a hot cathode was developed by John B. Johnson (who gave his name to the term Johnson noise) and Harry Weiner Weinhart of Western Electric, and became a commercial product in 1922.
A cathode ray tube is a vacuum tube which consists of one or more electron guns, possibly internal electrostatic deflection plates, and a phosphor target.[2] In television sets and computer monitors, the entire front area of the tube is scanned repetitively and systematically in a fixed pattern called a raster. An image is produced by controlling the intensity of each of the three electron beams, one for each additive primary color (red, green, and blue) with a video signal as a reference.[3] In all modern CRT monitors and televisions, the beams are bent by magnetic deflection, a varying magnetic field generated by coils and driven by electronic circuits around the neck of the tube, although electrostatic deflection is commonly used in oscilloscopes, a type of diagnostic instrument.[3]
In oscilloscope CRTs, electrostatic deflection is used, rather than the magnetic deflection commonly used with television and other large CRTs. The beam is deflected horizontally by applying an electric field between a pair of plates to its left and right, and vertically by applying an electric field to plates above and below.[4][5][6]
Various phosphors are available depending upon the needs of the measurement or display application. The brightness, color, and persistence of the illumination depends upon the type of phosphor used on the CRT screen. Phosphors are available with persistences ranging from less than one microsecond to several seconds.[7] For visual observation of brief transient events, a long persistence phosphor may be desirable. For events which are fast and repetitive, or high frequency, a short-persistence phosphor is generally preferable.[8]
When displaying fast one-shot events the electron beam must deflect very quickly, with few electrons impinging on the screen; leading to a faint or invisible display. Oscilloscope CRTs designed for very fast signals can give a brighter display by passing the electron beam through a micro-channel plate just before it reaches the screen. Through the phenomenon of secondary emission this plate multiplies the number of electrons reaching the phosphor screen, giving a significant improvement in writing rate (brightness), and improved sensitivity and spot size as well.[9][10]
Most oscilloscopes have a graticule as part of the visual display, to facilitate measurements. The graticule may be permanently marked inside the face of the CRT, or it may be a transparent external plate. External graticules are typically made of glass or acrylic plastic. An internal graticule provides an advantage in that it eliminates parallax error. Unlike an external graticule, an internal graticule can not be changed to accommodate different types of measurements.[11] Oscilloscopes commonly provide a means for the graticule to be side-illuminated, which improves its visibility when used in a darkened room or when shaded by a camera hood.[12]
Color tubes use three different phosphors which emit red, green, and blue light respectively. They are packed together in stripes (as in aperture grille designs) or clusters called "triads" (as in shadow mask CRTs).[13] Color CRTs have three electron guns, one for each primary color, arranged either in a straight line or in a triangular configuration (the guns are usually constructed as a single unit). A grille or mask absorbs the electrons that would otherwise hit the wrong phosphor.[14] A shadow mask tube uses a metal plate with tiny holes, placed so that the electron beam only illuminates the correct phosphors on the face of the tube.[13] Another type of color CRT uses an aperture grille to achieve the same result.[14]
The three beams in color CRTs would not strike the screen at the same point without convergence calibration. Instead, the set would need to be manually adjusted to converge the three color beams together to maintain color accuracy.[15]
Most CRT television sets and computer monitors have a built-in degaussing (demagnetizing) coil, which upon power-up creates a brief, alternating magnetic field which decays in strength over the course of a few seconds. This degaussing field is strong enough to remove most cases of shadow mask magnetization.[16]
Vector monitors were used in early computer aided design systems and in some late-1970s to mid-1980s arcade games such as Asteroids.[17] They draw graphics point-to-point, rather than scanning a raster.
Dot pitch defines the maximum resolution of the display, assuming delta-gun CRTs. In these, as the scanned resolution approaches the dot pitch resolution, moiré appears, as the detail being displayed is finer than what the shadow mask can render.[18] Aperture grille monitors do not suffer from vertical moiré, however, because their phosphor stripes have no vertical detail. In smaller CRTs, these strips maintain position by themselves, but larger aperture grille CRTs require one or two crosswise (horizontal) support strips.[19]
CRTs have a pronounced triode characteristic, which results in significant gamma (a nonlinear relationship in an electron gun between applied video voltage and light intensity).[20]
In better quality tube radio sets a tuning guide consisting of a phosphor tube was used to aid the tuning adjustment. This was also known as a "Magic Eye" or "Tuning Eye". Tuning would be adjusted until the width of a radial shadow was minimized. This was used instead of a more expensive electromechanical meter, which later came to be used on higher-end tuners when transistor sets lacked the high voltage required to drive the device.[21]
Some displays for early computers (those that needed to display more text than was practical using vectors, or that required high speed for photographic output) used Charactron CRTs. These incorporate a perforated metal character mask (stencil), which shapes a wide electron beam to form a character on the screen. The system selects a character on the mask using one set of deflection circuits, but that causes the extruded beam to be aimed off-axis, so a second set of deflection plates has to re-aim the beam so it is headed toward the center of the screen. A third set of plates places the character wherever required. The beam is unblanked (turned on) briefly to draw the character at that position. Graphics could be drawn by selecting the position on the mask corresponding to the code for a space (in practice, they were simply not drawn), which had a small round hole in the center; this effectively disabled the character mask, and the system reverted to regular vector behavior. Charactrons had exceptionally-long necks, because of the need for three deflection systems.[22][23]
Nimo was the trademark of a family of small specialised CRTs manufactured by Industrial Electronics Engineers. These had 10 electron guns which produced electron beams in the form of digits in a manner similar to that of the charactron. The tubes were either simple single-digit displays or more complex 4- or 6- digit displays produced by means of a suitable magnetic deflection system. Having little of the complexities of a standard CRT, the tube required a relatively simple driving circuit, and as the image was projected on the glass face, it provided a much wider viewing angle than competitive types (e.g. nixie tubes).[24]
In the late 1990s and early 2000s Philips Research Laboratories experimented with a type of thin CRT known as the Zeus display which contained CRT-like functionality in a flat panel.[25][26][27][28][29][30] The devices were demonstrated but never marketed.
The demand for CRT screens has been falling rapidly,[31] and producers are responding to this trend. For example, in 2005, Sony announced that they would stop the production of CRT computer displays. It has been common to replace CRT-based televisions and monitors in as little as 5–6 years, although they generally are capable of satisfactory performance for a much longer time.
The end of most high-end CRT production in the mid 2000s [32] (including high-end Sony and Mitsubishi product lines) means an erosion of the CRT's capability.[33][34] Samsung did not introduce any CRT models for the 2008 model year at the 2008 Consumer Electronics Show and on February 4, 2008 Samsung removed their 30" wide screen CRTs from their North American website and has not replaced them with new models.[35] This demise, however, has been adapted more slowly in the developing world. According to iSupply, production in units of CRTs was not surpassed by LCDs production until 4Q 2007, owing largely to CRT production at factories in China.
In the United Kingdom, DSG (Dixons), the largest retailer of domestic electronic equipment, reported that CRT models made up 80–90% of the volume of televisions sold at Christmas 2004 and 15–20% a year later, and that they were expected to be less than 5% at the end of 2006. Dixons ceased selling CRT televisions in 2007.[36]
CRTs, despite recent advances, have remained relatively heavy and bulky and take up a lot of space in comparison to other display technologies, and this became a significant disadvantage as consumers considered the thin and wall-mountable flat panels a selling point. CRT screens have much deeper cabinets compared to flat panels and rear-projection displays for a given screen size, and so it becomes impractical to have CRTs larger than 40 inches (102 cm).
Generally, rear-projection displays and LCDs require more power per display area than CRTs for displays larger than 12", assuming the same per square meter² brightness and a modern aperture grill design. Monochrome CRTs are even more efficient than color CRTs. This is because up to 2/3rds of the backlight power of LCD and rear-projection displays are lost to the RGB stripe filter. Most LCDs also have poorer color rendition and can change color with viewing angle, though modern PVA and IPS LCDs have greatly attenuated these problems.
In the first quarter of 2008, CRTs retook the #2 technology position in North America from plasma, due to the decline and consolidation of plasma display manufacturers. DisplaySearch has reported that although in the 4Q of 2007 LCDs surpassed CRTs in worldwide sales, CRTs then outsold LCDs in the 1Q of 2008.[37][38]
CRTs are useful for displaying photos with high pixels per unit area and correct color balance. LCDs, as currently the most common flatscreen technology, have generally inferior color rendition (despite having greater overall brightness) due to the fluorescent lights commonly used as a backlight.[39]
CRTs are still popular in the printing and broadcasting industries as well as in the professional video, photography, and graphics fields due to their greater color fidelity, contrast and better viewing from off-axis (wider viewing angle). CRTs also still find adherents in video gaming because of their higher resolution per initial cost, fast response time, and multiple native resolutions.[40]
CRTs such as the Sony Trinitron (1990s) employ a tinted anti-reflective coating which absorbs far more reflected light than the etched glass used in almost all LCDs sold in 2010. CRT users can sit in front of a large (20") screen for a full 8-hour day without getting tired eyes or headaches.[41]
CRTs can emit a small amount of X-ray radiation as a result of the electron beam's bombardment of the shadow mask/aperture grille and phosphors. The amount of radiation escaping the front of the monitor is widely considered unharmful. The Food and Drug Administration regulations in 21 C.F.R. 1020.10 are used to strictly limit, for instance, television receivers to 0.5 milliroentgens per hour (mR/h) (0.13 µC/(kg·h) or 36 pA/kg) at a distance of 5 cm (2 in) from any external surface; since 2007, most CRTs have emissions that fall well below this limit.[42]
Color and monochrome CRTs may contain toxic substances, such as cadmium, in the phosphors.[43][44] The rear glass tube of modern CRTs may be made from leaded glass, which represent an environmental hazard if disposed of improperly.[45] By the time personal computers were produced, glass in the front panel (the viewable portion of the CRT) used barium rather than lead, though the rear of the CRT was still produced from leaded glass. Monochrome CRTs typically do not contain enough leaded glass to fail EPA tests.
In October 2001, the United States Environmental Protection Agency created rules stating that CRTs must be brought to special recycling facilities. In November 2002, the EPA began fining companies that disposed of CRTs through landfills or incineration. Regulatory agencies, local and statewide, monitor the disposal of CRTs and other computer equipment.[46]
In Europe, disposal of CRT televisions and monitors is covered by the WEEE Directive.[47]
At low refresh rates (below 50 Hz), the periodic scanning of the display may produce an irritating flicker that some people perceive more easily than others, especially when viewed with peripheral vision. A high refresh rate (above 72 Hz) reduces the effect. Computer displays and televisions with CRTs driven by digital electronics often use refresh rates of 100 Hz or more to largely eliminate any perception of flicker.[48] Non-computer CRTs or CRT for sonar or radar may have long persistence phosphor and are thus flicker free. If the persistence is too long on a video display, moving images will be blurred.
CRTs used for television operate with horizontal scanning frequencies of 15,734 Hz (for NTSC systems) or 15,625 Hz (for PAL systems).[49] These frequencies are at the upper range of human hearing and are inaudible to many people; some people will perceive a high-pitched tone near an operating television CRT.[50] The sound is due to magnetostriction in the magnetic core of the flyback transformer.
A high vacuum exists within all cathode ray tubes. If the outer glass envelope is damaged, a dangerous implosion may occur. Glass pieces may explode outwards at dangerous velocities. While modern CRTs used in televisions and computer displays have epoxy-bonded face-plates or other measures to prevent shattering of the envelope, CRTs removed from equipment must be handled carefully to avoid personal injury.[51]
Under some circumstances, the signal radiated from the electron guns, scanning circuitry, and associated wiring of a CRT can be captured and used to remotely reconstruct what is shown on the CRT, using a process called Van Eck phreaking.[52] Special TEMPEST shielding can mitigate this effect. Such radiation of a potentially exploitable signal however occurs also with LCDs and with all electronics in general.
|